The G1 kinase CDK4 is amplified or overexpressed in some human tumors and promotes tumorigenesis by inhibiting known tumor suppressors. Here, we report that CDK4 deficiency markedly accelerated lymphoma development in the Eμ-Myc transgenic mouse model of B lymphoma and that silencing or loss of CDK4 augmented the tumorigenic potential of Myc-driven mouse and human B cell lymphoma in transplant models. Accelerated disease in CDK4-deficient Eμ-Myc transgenic mice was associated with rampant genomic instability that was provoked by dysregulation of a FOXO1/RAG1/RAG2 pathway. Specifically, CDK4 phosphorylated and inactivated FOXO1, which prevented FOXO1-dependent induction of Rag1 and Rag2 transcription. CDK4-deficient Eμ-Myc B cells had high levels of the active form of FOXO1 and elevated RAG1 and RAG2. Furthermore, overexpression of RAG1 and RAG2 accelerated lymphoma development in a transplant model, with RAG1/2-expressing tumors exhibiting hallmarks of genomic instability. Evaluation of human tumor samples revealed that CDK4 expression was markedly suppressed, while FOXO1 expression was elevated, in several subtypes of human non-Hodgkin B cell lymphoma. Collectively, these findings establish a context-specific tumor suppressor function for CDK4 that prevents genomic instability, which contributes to B cell lymphoma. Furthermore, our data suggest that targeting CDK4 may increase the risk for the development and/or progression of lymphoma.
IntroductionMYC oncoproteins function as transcription factors that coordinate the expression of a large cast of genes that direct cell metabolism, growth, and division. Elevated MYC levels are a hallmark of rapidly dividing human malignancies, and this has major effects on cell physiology, provoking hyperproliferative and DNA damage responses (DDRs) as well as apoptosis (1, 2). In the Eμ-Myc transgenic mouse, a model of human B cell lymphoma (3), bypass of these three checkpoints accompanies malignant transformation. First, MYC activates a DDR in premalignant B cells (4), perhaps via MYC's effects on unscheduled firing of DNA replication origins (5). Second, MYC induces the Arf tumor suppressor that inactivates the E3 ubiquitin ligase MDM2, leading to p53 stabilization and p53-dependent apoptosis (6, 7). Third, MYC triggers p27 Kip1 destruction by the SCF Skp2 complex by inducing Cks1 expression as well as the expression of cyclin D2 (Ccnd2), which sequesters p27 Kip1 , and both responses likely contribute to the hyperproliferative response of MYC (8).c-MYC directly induces the transcription of Cdk4 (9), a G1 serine/ threonine kinase (10, 11) that is required for tumorigenesis in some contexts (12)(13)(14). CDK4 activation requires binding to the regulatory cyclin subunits cyclin D1, -D2, or -D3. CDK4:cyclin D complexes phosphorylate and inactivate the retinoblastoma (Rb) tumorsuppressor protein, releasing E2F transcription factors that regulate genes necessary for entry and progression through the S phase (15).