Protein-coding mutations in clear cell renal cell carcinoma (ccRCC) have been extensively characterized, frequently involving inactivation of the von Hippel-Lindau ( VHL ) tumor suppressor. Roles for noncoding cis -regulatory aberrations in ccRCC tumorigenesis, however, remain unclear. Analyzing 10 primary tumor/normal pairs and 9 cell lines across 79 chromatin profi les, we observed pervasive enhancer malfunction in ccRCC, with cognate enhancer-target genes associated with tissue-specifi c aspects of malignancy. Superenhancer profi ling identifi ed ZNF395 as a ccRCCspecifi c and VHL-regulated master regulator whose depletion causes near-complete tumor elimination in vitro and in vivo . VHL loss predominantly drives enhancer/superenhancer deregulation more so than promoters, with acquisition of active enhancer marks (H3K27ac, H3K4me1) near ccRCC hallmark genes. Mechanistically, VHL loss stabilizes HIF2α-HIF1β heterodimer binding at enhancers, subsequently recruiting histone acetyltransferase p300 without overtly affecting preexisting promoter-enhancer interactions. Subtype-specifi c driver mutations such as VHL may thus propagate unique pathogenic dependencies in ccRCC by modulating epigenomic landscapes and cancer gene expression.
SIGnIFICAnCE:Comprehensive epigenomic profi ling of ccRCC establishes a compendium of somatically altered cis -regulatory elements, uncovering new potential targets including ZNF395, a ccRCC master regulator. Loss of VHL , a ccRCC signature event, causes pervasive enhancer malfunction, with binding of enhancer-centric HIF2α and recruitment of histone acetyltransferase p300 at preexisting lineage-specifi c promoter-enhancer complexes. Cancer Discov; 7(11); 1284-305.