The vascular barrier is heavily injured following SARS-CoV-2 infection and contributes enormously to life-threatening complications in COVID-19. This endothelial dysfunction is associated with the phlogistic phenomenon of cytokine storms, thrombotic complications, abnormal coagulation, hypoxemia, and multiple organ failure. The mechanisms surrounding COVID-19 associated endotheliitis have been widely attributed to ACE2-mediated pathways. However, integrins are emerging as possible receptor candidates for SARS-CoV-2, and their complex intracellular signaling events are essential for maintaining endothelial homeostasis. Here, we showed that the spike protein of SARS-CoV-2 depends on its RGD motif to drive barrier dysregulation by hijacking integrin αVβ3, expressed on human endothelial cells. This triggers the redistribution and internalization of major junction protein VE-Cadherin which leads to the barrier disruption phenotype. Both extracellular and intracellular inhibitors of integrin αVβ3 prevented these effects, similarly to the RGD-cyclic peptide compound Cilengitide, which suggests that the spike protein—through its RGD motif—binds to αVβ3 and elicits vascular leakage events. These findings support integrins as an additional receptor for SARS-CoV-2, particularly as integrin engagement can elucidate many of the adverse endothelial dysfunction events that stem from COVID-19.