2019
DOI: 10.31649/1997-9266-2019-147-6-62-72
|View full text |Cite
|
Sign up to set email alerts
|

Intellectual Technology of Analysis and Price Forecasting of Used Cars

Abstract: 1 Вінницький національний технічний університет Для вигідного продажу вживаного автомобіля слід керуватись не лише власною оцінкою або оцінкою сторонніх експертів, але й використовувати всі інші придатні для цього ресурси. Такими ресурсами можуть слугувати системи передбачення ціни, які за допомогою загальних ознак того чи іншого автомобіля (як-от виробник автомобіля, модель автомобіля, пробіг, вид палива, тип кузова тощо) здатні прогнозувати можливу ціну автомобіля. Такі системи можуть допомогти під час прийн… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…However, without the efficient filtration of erroneous and abnormal data it is difficult to achieve high accuracy of the prediction of the basic statistical set of data. For instance, the cost of the used motor vehicle of 2,5 bn or 0 USD [4] could hardly allow to construct the efficient model for the prediction of this cost in the USA, if these data were not filtered. Greater part of the machine learning model require the independence of the features and their distribution according to the normal law, but in practice this happens seldom, especiallythe second.…”
Section: Introductionmentioning
confidence: 99%
“…However, without the efficient filtration of erroneous and abnormal data it is difficult to achieve high accuracy of the prediction of the basic statistical set of data. For instance, the cost of the used motor vehicle of 2,5 bn or 0 USD [4] could hardly allow to construct the efficient model for the prediction of this cost in the USA, if these data were not filtered. Greater part of the machine learning model require the independence of the features and their distribution according to the normal law, but in practice this happens seldom, especiallythe second.…”
Section: Introductionmentioning
confidence: 99%