Diagnosis of discrete‐event systems (DESs) is computationally complex. This is why a variety of knowledge compilation techniques have been proposed, the most notable of them rely on a diagnoser. However, the construction of a diagnoser requires the generation of the whole system space, thereby making the approach impractical even for DESs of moderate size. To avoid total knowledge compilation while preserving efficiency, a twin‐engined diagnosis technique is proposed in this paper, which is inspired by the two operational modes of the human mind. If the symptom of the DES is part of the knowledge or experience of the diagnosis engine, then Engine 1 allows for efficient diagnosis. If, instead, the symptom is unknown, then Engine 2 comes into play, which is far less efficient than Engine 1. Still, the experience acquired by Engine 2 is then integrated into the symptom dictionary of the DES. This way, if the same diagnosis problem arises anew, then it will be solved by Engine 1 in linear time. The symptom dictionary can also be extended by specialized knowledge coming from scenarios, which are the most critical/probable behavioral patterns of the DES, which need to be diagnosed quickly.