Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Downhole wireless communication in the form of mud pulse telemetry enabled directional drilling over the past 60 years and has been hugely successful. Technologies like Measurement While Drilling (MWD), Logging While Drilling (LWD), and Geosteering would simply not exist without it. But in the Production and Producing end of the business, applications for downhole wireless communication have been less clear, especially where long distances and long-term monitoring are concerned. Several wireless technologies are in use today for long-term production applications. Electromagnetic (EM), acoustic, and pressure pulse telemetries are finding application as wireless production gauges, drill stem test tools, and drilling alternatives to pressure pulse. But the large-scale vision of, "Breaking the Wire!" in production wells has not yet occurred. Permanent Downhole Gauges (PDG) with an umbilical to surface are still the product of choice for long-term production monitoring. A history of wireless approaches in production applications will be given and the different methods used in the industry will be explained. A comparison and contrast of wireless telemetry methods will be explored, explained, and evaluated. Advantages and disadvantages will be listed for each approach. A ranking system will be employed to illustrate the evaluation results of the different wireless telemetry methods. New variants for wireless telemetry, power supplies, and measurement methods will be proposed. Preferred applications for each gauge type will be given. Downhole gauges can be improved by integrating pressure pulse, a downhole power generator, and downhole flow rate measurement into a single unit. The overall size can be ten times shorter than existing systems while still generating a larger wireless signal. Such a system would make wireless downhole gauges much more practical and should significantly increase their uptake in the industry. Real-time measurement of downhole pressure and downhole flow rate transforms the accuracy and effectiveness of Pressure Transient Analysis (PTA). Better reservoir understanding can be gained by using only drawdown tests, without shutting in the well. Smaller tools are generally more cost effective.
Downhole wireless communication in the form of mud pulse telemetry enabled directional drilling over the past 60 years and has been hugely successful. Technologies like Measurement While Drilling (MWD), Logging While Drilling (LWD), and Geosteering would simply not exist without it. But in the Production and Producing end of the business, applications for downhole wireless communication have been less clear, especially where long distances and long-term monitoring are concerned. Several wireless technologies are in use today for long-term production applications. Electromagnetic (EM), acoustic, and pressure pulse telemetries are finding application as wireless production gauges, drill stem test tools, and drilling alternatives to pressure pulse. But the large-scale vision of, "Breaking the Wire!" in production wells has not yet occurred. Permanent Downhole Gauges (PDG) with an umbilical to surface are still the product of choice for long-term production monitoring. A history of wireless approaches in production applications will be given and the different methods used in the industry will be explained. A comparison and contrast of wireless telemetry methods will be explored, explained, and evaluated. Advantages and disadvantages will be listed for each approach. A ranking system will be employed to illustrate the evaluation results of the different wireless telemetry methods. New variants for wireless telemetry, power supplies, and measurement methods will be proposed. Preferred applications for each gauge type will be given. Downhole gauges can be improved by integrating pressure pulse, a downhole power generator, and downhole flow rate measurement into a single unit. The overall size can be ten times shorter than existing systems while still generating a larger wireless signal. Such a system would make wireless downhole gauges much more practical and should significantly increase their uptake in the industry. Real-time measurement of downhole pressure and downhole flow rate transforms the accuracy and effectiveness of Pressure Transient Analysis (PTA). Better reservoir understanding can be gained by using only drawdown tests, without shutting in the well. Smaller tools are generally more cost effective.
The drilling of a secondary wellbore departing from a primary wellbore, known as a sidetrack, is used for many reasons during wellbore construction. Sidetrack techniques and procedures are well established with all the major service companies. A typical sidetrack operation would consist of setting a deflector (whipstock), cutting a hole in the existing casing (window), and then drilling into the formation at the desired exit angle and direction (kick off) to produce a starting hole (rathole) for subsequent drilling. The sidetrack milling assembly would then be Pulled Out of Hole and the drilling bottom hole assembly (BHA) run in hole to continue drilling the secondary wellbore trajectory. If for some reason, the casing exit and desired departure of the sidetrack is not obtained, this will remain unknown until the subsequent drilling operation with Logging While Drilling (LWD) tools are run in hole and have extended the rathole. The failure to obtain and recognize the desired kickoff departure prior subsequent drilling operations can lead to significant Non Productive Time (NPT) and subsequent rectification costs. This paper describes the development and successful testing of a compact sensor package located near the front of the sidetrack milling assembly. The sensor package is activated at surface and records inclination data during the sidetrack operation. When the sidetrack milling assembly is pulled out of hole the sensor is read wirelessly using a handheld reader once the milling assembly is at surface. The reader gives the operator a visual confirmation, or otherwise, that the desired sidetrack kick off departure has been achieved allowing informed decisions to be made on the next operational stage.
Productivity index is directly proportional to the total reservoir contact (RC) within the same reservoir, hence the applications of multilateral. The new generation of the smart multilateral well completions divides the lateral section into a number of segments through oil swell packers and integrated stations are placed against each segment. The integrated station consists of electrical ICVs, downhole liquid metering and WC and pressure measurements sensors. The unique smart completion allows real-time optimization and controlling of unwanted fluids on the segment level, utilizing the fast electrical ICVs. A comprehensive methodology has been developed to establish a production balance across the segments and the laterals utilizing the real-time downhole measurements rather than the tedious trial and error procedure. The methodology is divided into two components. In the first component: a single multilateral model is constructed using a single well modelling application. The model is calibrated to match the recent production test conducted on the well. Several simulation runs are performed on the calibrated model to test different combination of the downhole and surface choke settings until the well produces the target on condition that the laterals are producing equally. In the second component: a real-time production optimization process is conducted on the well using the outcomes of the first component. The proposed methodology was conducted on multilaterals well with hydraulic and electrical ICVs and successfully completed. A good match has been obtained between the outcomes of the calibrated modeland the actual performance of the well. The process brings the well to the target at a straightforward task and avoids the trial and error procedure that may.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.