The inherent highly nonlinear coupling and system uncertainties make the controller design for a flexible-joint robot extremely difficult. The goal of the control of any robotic system is to achieve high bandwidth, high accuracy of trajectory tracking, and high robustness, whereby the high bandwidth for flexible-joint robot is the most challenging issue. This paper is dedicated to design such a link position controller with high bandwidth based on sliding-mode technique. Then, two control approaches ((1) extended-regular-form approach and (2) the cascaded control structure based on the sliding-mode estimator approach) are presented for the link position tracking control of flexible-joint robot, considering the dynamics of AC-motors in robot joints, and compared with the singular perturbation approach. These two-link position controllers are tested and verified by the simulation studies with different reference trajectories and under different joint stiffness.