2015 E-Health and Bioengineering Conference (EHB) 2015
DOI: 10.1109/ehb.2015.7391552
|View full text |Cite
|
Sign up to set email alerts
|

Intelligent decision systems in Medicine — A short survey on medical diagnosis and patient management

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(4 citation statements)
references
References 25 publications
0
3
0
1
Order By: Relevance
“…Teletıptaki kullanım eğilimleri, hasta izleme, sağlık hizmetleri bilgi teknolojisi, akıllı asistan teşhis yardımı ve bilgi analizi alanlarında yoğunlaşmaktadır [41]. Yapay zeka, otomatik tanı ve tedavi önerisi, görüntü tanıma ve yorumlama gibi çeşitli alanları kapsamaktadır [42]. Yapay zeka ve derin öğrenme algoritmaları çok hızlı analiz yaparak hekimlere yol göstermekte ve hastalıkların teşhisinde önemli katkı sunmaktadır [43].…”
Section: Yöntem (Method)unclassified
“…Teletıptaki kullanım eğilimleri, hasta izleme, sağlık hizmetleri bilgi teknolojisi, akıllı asistan teşhis yardımı ve bilgi analizi alanlarında yoğunlaşmaktadır [41]. Yapay zeka, otomatik tanı ve tedavi önerisi, görüntü tanıma ve yorumlama gibi çeşitli alanları kapsamaktadır [42]. Yapay zeka ve derin öğrenme algoritmaları çok hızlı analiz yaparak hekimlere yol göstermekte ve hastalıkların teşhisinde önemli katkı sunmaktadır [43].…”
Section: Yöntem (Method)unclassified
“…In this work, we use prediction systems that are trained from a set of labeled records and generate a model able to classify new data ( 17 ). There are innumerable applications of this technology in medical classification systems ( 18 , 19 ). Specifically, in the LT field, ML has been used for screening and selecting LT recipients and predicting post-LT survival and complications ( 20 ).…”
Section: Introductionmentioning
confidence: 99%
“…The firms of high tech, telecom, automotive, and financial sectors appear to be on a high AI adoption curve, whereas their counterparts of healthcare, education, travel sectors seem to be on a low AI adoption curve. Although AI in healthcare has become an essential tool, especially in diseases diagnosis, image recognition and interpretation, therapy recommendation, patient management, and telemedicine (Gorunescu, 2015), its adoption as indicated in McKinsey's report is lacking and needs further investigation to help understand its promising role across different healthcare services. This has been supported by Secinaro et al (2021) who highlighted how emerging the use of AI in healthcare, which gives us a higher motivation to disclose to what extent AI can play a role in affecting health services, considering the patients' privacy and trust.…”
Section: Introductionmentioning
confidence: 99%