2021
DOI: 10.21203/rs.3.rs-521872/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Intelligent Fault Diagnosis of Wind Turbine Gearbox based on Refined Generalized Multi-scale State Joint Entropy and RSFS Feature Selection

Abstract: The fault diagnosis of gearbox and bearing in wind turbine is crucial to improve service life and reduce maintenance cost. This paper proposes a novel fault diagnosis method based on refined generalized composite multi-scale state joint entropy (RGCMSJE), robust spectral learning framework for unsupervised feature selection (RSFS) and extreme learning machine (ELM) to identify the different health conditions of gearboxes, including feature extraction, feature reduction and pattern recognition. In this method, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?