Deformation effectively represents the structural integrity of concrete dams and acts as a clear indicator of their operational performance. Predicting deformation is critical for monitoring the safety of hydraulic structures. To this end, this paper proposes an artificial intelligence-based process for predicting concrete dam deformation. Initially, using the principles of feature engineering, the preprocessing of deformation safety monitoring data is conducted. Subsequently, employing a stacking model fusion method, a novel prediction process embedded with multiple artificial intelligence algorithms is developed. Moreover, three new performance indicators—a superiority evaluation indicator, an accuracy evaluation indicator, and a generalization evaluation indicator—are introduced to provide a comprehensive assessment of the model’s effectiveness. Finally, an engineering example demonstrates that the ensemble artificial intelligence method proposed herein outperforms traditional statistical models and single machine learning models in both fitting and predictive accuracy, thereby providing a scientific and effective foundation for concrete dam deformation prediction and safety monitoring.