In recent years, the tourism industry has grown rapidly around the world as an emerging force, especially in China, which has become the world’s leading tourism country in recent years, and its tourism revenue also occupies a good weight in the country’s total income. The number of tourists every year shows a very high growth rate, which not only improves the tourism economy but also brings great pressure to the management of various tourist attractions. In this context, many tourist attractions are actively developing innovative applications of new technologies, hoping to effectively improve their management efficiency. In these experiments, the speech big data analysis technology has achieved remarkable achievements, so it is necessary to combine the speech big data analysis technology with the demand analysis of the tourism industry. The purpose of this paper is to study the effective model of tourism consumer demand prediction using big data analysis. In the process of completing this paper, we consulted a large number of research results of big data analysis technology, tourism-related books, and demand prediction models in HowNet, VIP, and other network databases as well as campus libraries, summarized the related concepts of tourism, and used big data analysis technology to predict the demand of tourism consumers. Understand the needs of tourism consumers on major tourism websites, and extract the indicators that will affect the forecast results of consumer demand, establish a demand forecast model based on the indicators, and analyze its forecast effects through comparative analysis to understand its advantages and disadvantages, in order to establish a tourism demand forecast models providing actionable advice. Through the practical application case of the demand forecasting model, this paper puts forward the development strategy of tourism. The experimental results show that the mean square error of the neural network model is less than 2.5, which is more suitable for predicting the number of tourists, indicating that different models are suitable for predicting different indicators. The main contribution of this research lies in the modeling and analysis of regional tourism characteristics and tourists’ willingness, so as to achieve accurate prediction of tourists in scenic spots and formulate targeted plans.