The heterogeneous novelty applications present in the 5th generation (5G) era, including machine-type communication (mMTC), enhanced mobile broadband (eMBB) communication, and ultra-reliable low latency communication (URLLC), which required mobile edge computing (MEC) for local computation and services. The next-generation radio networking (NGRN) will rely on new radio (NR) with the millimeter-wavelength (mmWave) technologies that enable ultra-dense connectivities of the deployed heterogeneous mobile terminal gateways (MTG). However, the mission-critical mMTC applications will suffer from inadequate radio resource management and orchestration (MANO), which will diminish end-to-end (E2E) communication reliability in edge areas. This paper proposed optimal MTG selections and resource allocation (RA) based on the complementary between MTG loading prediction based on recurrent neural network-based long short-term memory (RNN-LSTM) and MTG loading adjustment based on the applied deep reinforcement learning (DRL) approaches, respectively. Furthermore, the RNN-LSTM enhances offloading and handover decisions with discrete-time predictions, while the DRL plays an essential role in adjusting the determined MTG during congestion situations. The proposed method contributed to remarkable outcomes in crucial performance metrics over reference approaches regarding computation and communication quality of service (QoS).