Frequency selective rasorbers (FSRs), especially those with ultra-wideband and hybrid characteristics, are of great significance in modern stealth technology and applications. However, currently available FSRs have issues with limited transmission bandwidth and single operating characteristics. Here, a novel strategy is proposed to design multi-characteristic integrated FSRs with ultra-wide and high-efficiency passband via spoof surface plasmon polariton (SSPP). The designed FSR exhibits the characteristics of absorptiontransmission (AT), transmission-absorption (TA), and absorption-transmission-absorption (ATA), which consists of AT resistive sheets, TA SSPP slow-wave structures, and ultra-wideband bandpass frequency selective surface (FSS). The top lumped-resistor-loaded resistive sheet and the bottom multi-layer cascaded FSS form an AT FSR which is demonstrated by equivalent circuit model (ECM). Middle dispersion gradient SSPP structure that generates SSPP on the periodic array is an independent TA FSR while the working principle is based on k-dispersion control and energy distribution. Thus, the transition band between the transmissive and absorptive bands is narrowed while the crosstalk between absorber and transmission is avoided. For verification, a prototype is fabricated and experimentally demonstrated. Measured results manifest the validity and feasibility of the FSR with an ultra-wide −1 dB transmission band from 8.9 to 16.4 GHz (59.3%) and two 85% absorption bands covering 2.2-6.4 GHz (97.7%) and 17.6-26 GHz (38.5%). Our work provides a novel method for the design of an ultra-wideband multi-characteristic FSR and stimulates its application in broadband electromagnetic stealth, shielding and compatible devices.