2022
DOI: 10.14569/ijacsa.2022.0130983
|View full text |Cite
|
Sign up to set email alerts
|

Intelligent System for Personalised Interventions and Early Drop-out Prediction in MOOCs

Abstract: In this paper, we propose an approach to early detect students at high risk of drop-out in MOOC (Massive Open Online Course); we design personalised interventions to mitigate that risk. We apply Machine Learning (ML) algorithms and data mining techniques to a dataset extracted from XuetangX MOOC learning platforms and sourced from the KDD cup 2015. Since this dataset contains only raw student log activity records, we perform a hybrid feature selection and dimensionality reduction techniques to extract relevant… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 27 publications
0
0
0
Order By: Relevance