Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents a perspective on Biosignal-Adaptive Systems (BAS) which automatically adapt to user needs by continuously interpreting their biosignals and by providing transparent feedback, thereby keeping the user in the loop. The major hallmark of the described BAS is the low latency with which biosignals are processed, interpreted, and applied to perform rapid system adaptation, providing the user in the loop with immediate feedback on the BAS’s understanding of his or her condition. In contrast to explicit user input or the interpretation of observable behavior, the rapid system adaptation relies on biosignals, which in context of a concrete application can be interpreted as implicit signals of user needs. Recently, great advances have been made in sensor integration into smart devices, making it possible to collect vasts amounts of multimodal biosignal data. Furthermore, powerful machine learning methods enable rapidly processing and learning from such data. We argue that the time has come to harness the full spectrum of low-latency processing of biosignals to understand user needs and to apply this information to deliver adaptive systems accordingly. However, this will just be the beginning: real-time signal processing in combination with ubiquitous devices that are always connected to huge processing and storage capacities allow systems to provide users (and bystanders) with instant and transparent feedback and adaptations for the recognized needs. In the future, such systems could run 24/7 to assist users @home, @work, and @play from the cradle to the grave. Thus, BAS must be human-centric to curate data, archive information, learn from experience, and adapt to individual users throughout their lifespan. In this position paper, we present the concept of BAS with its key building blocks, provide selected examples of BAS from our research, and articulate selected challenges for future research.
This paper presents a perspective on Biosignal-Adaptive Systems (BAS) which automatically adapt to user needs by continuously interpreting their biosignals and by providing transparent feedback, thereby keeping the user in the loop. The major hallmark of the described BAS is the low latency with which biosignals are processed, interpreted, and applied to perform rapid system adaptation, providing the user in the loop with immediate feedback on the BAS’s understanding of his or her condition. In contrast to explicit user input or the interpretation of observable behavior, the rapid system adaptation relies on biosignals, which in context of a concrete application can be interpreted as implicit signals of user needs. Recently, great advances have been made in sensor integration into smart devices, making it possible to collect vasts amounts of multimodal biosignal data. Furthermore, powerful machine learning methods enable rapidly processing and learning from such data. We argue that the time has come to harness the full spectrum of low-latency processing of biosignals to understand user needs and to apply this information to deliver adaptive systems accordingly. However, this will just be the beginning: real-time signal processing in combination with ubiquitous devices that are always connected to huge processing and storage capacities allow systems to provide users (and bystanders) with instant and transparent feedback and adaptations for the recognized needs. In the future, such systems could run 24/7 to assist users @home, @work, and @play from the cradle to the grave. Thus, BAS must be human-centric to curate data, archive information, learn from experience, and adapt to individual users throughout their lifespan. In this position paper, we present the concept of BAS with its key building blocks, provide selected examples of BAS from our research, and articulate selected challenges for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.