In this study, an E-fenton oxidation system based on Co-N co-doped carbon nanotubes (Co-N-CNTs) was designed. The Co-N-CNTs system showed fast degradation efficiency and reusability for the degradation of rhodamine B (RhB). The XRD and SEM results showed that the Co-N co-doped carbon nanotubes with diameters ranging from 40 to 400 nm were successfully prepared. The E-Fenton degradation performance of Co-N-CNTs was investigated via CV, LSV and AC impedance spectroscopy. The yield of H2O2 could reach 80 mg/L/h within 60 min, and the optimal voltage and preparation temperature for H2O2 yield in this system was −0.7 V (vs. SCE) and 800 °C. For the target pollutant of RhB, the fast removal of RhB was obtained via the Co-N-CNTS/E-Fenton system (about 91% RhB degradation occurred during 60 min), and the •OH played a major role in the RhB degradation. When the Fe2+ concentrations increased from 0.3 to 0.4 mM, the RhB degradation efficiency decreased from 91% to about 87%. The valence state of Co in the Co-N-C catalyst drove a Co2+/Co3+ cycle, which ensured the catalyst had good E-Fenton degradation efficiency. This work provides new insight into the mechanism of an E-Fenton system with carbon-based catalysts for the efficient degradation of RhB.