Ultrasound (US) has been increasingly used during interventions, such as cardiac catheterization. To accurately identify the catheter inside US images, extra training for physicians and sonographers is needed. As a consequence, automated segmentation of the catheter in US images and optimized presentation viewing to the physician can be beneficial to accelerate the efficiency and safety of interventions and improve their outcome. For cardiac catheterization, a three-dimensional (3-D) US image is potentially attractive because of no radiation modality and richer spatial information. However, due to a limited spatial resolution of 3-D cardiac US and complex anatomical structures inside the heart, image-based catheter segmentation is challenging. We propose a cardiac catheter segmentation method in 3-D US data through image processing techniques. Our method first applies a voxel-based classification through newly designed multiscale and multidefinition features, which provide a robust catheter voxel segmentation in 3-D US. Second, a modified catheter model fitting is applied to segment the curved catheter in 3-D US images. The proposed method is validated with extensive experiments, using different in-vitro, ex-vivo, and in-vivo datasets. The proposed method can segment the catheter within an average tip-point error that is smaller than the catheter diameter (1.9 mm) in the volumetric images. Based on automated catheter segmentation and combined with optimal viewing, physicians do not have to interpret US images and can focus on the procedure itself to improve the quality of cardiac intervention.