A method for optimizing chemical composition of steel is proposed and a correlation is established to reduce cardinally alloy elements in existing steel grades that results in high compressive residual stresses at the surface of intensively quenched steel parts and increasing strength and ductility of material due to super- strengthening phenomenon. The algorithm of optimization consists in reducing alloy elements in existing alloy steel in 1.5 – 2 times and then lowering step-by-step content of steel, beginning from the most costly alloy element and ending the most cheaper one, until established correlation is satisfied. The range of reduction is minimal and during computer calculations can be chosen as 0,001wt%. The proposed approach can save alloy elements, energy, increase service life of machine components and improve environmental condition. The method is a basis for development of the new low hardenability (LH) and optimal hardenability (OH) steels.