Purpose
The opportunity to improve therapeutic choices on the basis of molecular features of the tumour cells is on the horizon in Diffuse Large B-cell Lymphoma (DLBCL). Agents such as bortezomib exhibit selective activity against the poor outcome activated B-cell type DLBCL. In order for targeted therapies to succeed in this disease, robust strategies that segregate patients into molecular groups with high reliability are needed. While molecular studies are considered gold standard, several immunohistochemistry (IHC) algorithms have been published that claim to be able to stratify patients according to their cell-of-origin and to be relevant for patient outcome. However results are poorly reproducible by independent groups.
Experimental design
We investigated nine IHC algorithms for molecular classification in a dataset of DLBCL diagnostic biopsies, incorporating immunostaining for CD10, BCL6, BCL2, MUM1, FOXP1, GCET1 and LMO2. IHC profiles were assessed and agreed among three expert observers. A consensus matrix based on all scoring combinations and the number of subjects for each combination allowed to assess reliability. The survival impact of individual markers and classifiers was evaluated using Kaplan-Meier curves and the log-rank test.
Results
The concordance in patient’s classification across the different algorithms was low. Only 4% the tumors have been classified as GCB and 21% as ABC/non-GCB by all methods. None of the algorithms provided prognostic information in the R-CHOP treated cohort.
Conclusion
Further work is required to standardize IHC algorithms for DLBCL cell-of-origin classification for these to be considered reliable alternatives to molecular-based methods to be used for clinical decisions.