2023
DOI: 10.1109/taslp.2023.3268577
|View full text |Cite
|
Sign up to set email alerts
|

Inter-Frequency Phase Difference for Phase Reconstruction Using Deep Neural Networks and Maximum Likelihood

Abstract: This paper presents improvements to two-stage algorithms for estimating the short-time Fourier transform (STFT) phase from only the amplitude by using deep neural networks (DNNs). The phase is difficult to reconstruct due to its sensitivity to the waveform shift and wrapping issue. To mitigate these problems, two-stage approaches indirectly estimate the phase through phase derivatives, i.e., instantaneous frequency (IF) and group delay (GD). In the first stage, the IF and GD are estimated from the amplitude us… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 52 publications
0
0
0
Order By: Relevance