“…Many different machine learning algorithms have been used in building software fault-proneness prediction models. These include J48 (Moser et al, 2008;Kamei et al, 2010;Krishnan et al, 2013), Random Forest (RF) (Guo et al, 2004;Mahmood et al, 2018;Fiore et al, 2021;Gong et al, 2021), and combinations of several machine learning algorithms, e.g., OneR, J48, and Naïve Bayes (NB) in (Menzies et al, 2007), RF, NB, RPart, and SVM in (Bowes et al, 2018), J48, RF, NB, Logistic Regression (LR), PART, and G-Lasso in (Goseva-Popstojanova et al, 2019), and Decision Tree (DT), k-Nearest Neighbor (kNN), LR, NB, and RF in (Kabir et al, 2021). With recent advances in Deep Neural Networks (DNN), some software fault-proneness prediction studies used deep learning (Wang et al, 2016;Li et al, 2017;Pang et al, 2017;Zhou et al, 2019;Zhao et al, 2021).…”