Satellite fog computing (SFC) achieves computation, caching, and other functionalities through collaboration among fog nodes. Satellites can provide real-time and reliable satellite-to-ground fusion services by pre-caching content that users may request in advance. However, due to the high-speed mobility of satellites, the complexity of user-access conditions poses a new challenge in selecting optimal caching locations and improving caching efficiency. Motivated by this, in this paper, we propose a real-time caching scheme based on a Double Deep Q-Network (Double DQN). The overarching objective is to enhance the cache hit rate. The simulation results demonstrate that the algorithm proposed in this paper improves the data hit rate by approximately 13% compared to methods without reinforcement learning assistance.