Abstract. Coating of particulate solids by a thin film layer is of interest in many industrial applications such as seed and tablet coating. In seed processing, seeds are commonly coated with a protective coating layer consisting of fertilisers and crop protection products. Rotary drum batch coaters are typically used for this purpose. The coater consists of a cylindrical vessel with a rotating spray disk in the centre, onto which the coating liquid is fed. The seeds are driven around the vessel by its rotating base, and are mixed by two baffles; one on either side of the vessel. In the present study, DEM simulations are used to analyse the seed coating process. Corn seed is used as a model material and its shape is captured using X-Ray microtomography (XRT). The shape is incorporated into the simulations by the clumping multiple spheres to form a particle assembly. The coating uniformity of the seeds is predicted by implementing a coating model, whereby the coating mechanism is represented in the DEM by considering that once a droplet contacts a corn seed, it is removed from the simulation and its mass is attributed to the coating mass of the corn seed. The distribution of mass of sprayed spheres on the corn seeds and the coefficient of variation are evaluated for a range of process conditions, such as spinning disk rotational speed, droplets size and baffle arrangement and designs. In addition to evaluation of coating uniformity of particles, the scale-up rules for rotary drum batch coaters are investigated and reported. The outcome provides guidelines on scale-up rules and improvement of coating uniformity for rotary batch seed coaters.