Five economically important crop pests, Manduca sexta, Pieris brassicae, Mamestra brassicae, Spodoptera exigua, and Agrotis ipsilon, were tested at two stages of larval development for susceptibility to Bacillus thuringiensis toxins Cry1Ac, Cry1Ca, Cry1J, and Cry1Ba. Bioassay results for M. sexta showed that resistance to all four Cry toxins increased from the neonate stage to the third-instar stage; the increase in resistance was most dramatic for Cry1Ac, the potency of which decreased 37-fold. More subtle increases in resistance during larval development were seen in M. brassicae for Cry1Ca and in P. brassicae for Cry1Ac and Cry1J. By contrast, the sensitivity of S. exigua did not change during development. At both larval stages, A. ipsilon was resistant to all four toxins. Because aminopeptidase N (APN) is a putative Cry1 toxin binding protein, APN activity was measured in neonate and third-instar brush border membrane vesicles (BBMV). With the exception of S. exigua, APN activity was found to be significantly lower in neonates than in third-instar larvae and thus inversely correlated with increased resistance during larval development. The binding characteristics of iodinated Cry1 toxins were determined for neonate and third-instar BBMV. In M. sexta, the increased resistance to Cry1Ac and Cry1Ba during larval development was positively correlated with fewer binding sites in third-instar BBMV than in neonate BBMV. The other species-instar-toxin combinations did not reveal positive correlations between potency and binding characteristics. The correlation between binding and potency was inconsistent for the species-instar-toxin combinations used in this study, reaffirming the complex mode of action of Cry1 toxins.The ␦ endotoxins are a family of insecticidal proteins produced by Bacillus thuringiensis during sporulation. These toxins are typically found in parasporal crystals that are released into the environment with the bacterial spores. Numerous ␦ endotoxins produced by B. thuringiensis have been identified and are grouped on the basis of sequence homology and insect specificity (40). The Cry1 toxins are a group of ␦ endotoxins that principally target lepidopteran species, including several important crop pests.The mechanism of action of the Cry1 ␦ endotoxins begins with solubilization of the protoxin in the alkaline larval midgut, followed by proteolytic processing by midgut proteases (40). The stable 60-to 65-kDa toxins then bind to midgut receptors and insert into the apical membrane of brush border epithelial cells to form pores. These pores disrupt functional membrane processes and are ultimately responsible for larval death (40).Each type of Cry1 toxin has a unique spectrum of activity and targets only a small range of lepidopteran species. Within the small target ranges there are dramatic differences in potency between species that are often closely related (12,15,31). Indeed, the potency of a Cry1 toxin can significantly decrease as the larvae age (1, 38). Variations in the potencies of Cry1 toxins ...