A general linear gauge-invariant equation for dispersive gravitational waves (GWs) propagating in matter is derived. This equation describes, on the same footing, both the usual tensor modes and the gravitational modes strongly coupled with matter. It is shown that the effect of matter on the former is comparable to diffraction and therefore negligible within the geometrical-optics approximation. However, this approximation is applicable to modes strongly coupled with matter due to their large refractive index. GWs in ideal gas are studied using the kinetic average-Lagrangian approach and the gravitational polarizability of matter that we have introduced earlier. In particular, we show that this formulation subsumes the kinetic Jeans instability as a collective GW mode with a peculiar polarization, which is derived from the dispersion matrix rather than assumed a priori. This forms a foundation for systematically extending GW theory to GW interactions with plasmas, where symmetry considerations alone are insufficient to predict the wave polarization.