In contextual fear conditioning (CFC), hippocampus is thought to process environmental stimuli into a configural representation of the context and send it to amygdala nuclei, which current evidences point to be the site of CS-US association and fear memory storage. If it is true, hippocampus should influence learning-induced plasticity in the amygdala nuclei after CFC acquisition. To test this, we infused wistar rats with saline or AP5, a NMDA receptor antagonist, in the dorsal hippocampus just before a CFC session, in which they were conditioned to a single shock, exposed to the context with no shocks or received an immediate shock. The rats were perfused, their brains harvested and immunohistochemically stained for cAMP element binding protein (CREB) phosphorylation ratio (pCREB/CREB) in lateral (LA), basal (B) and central (CeA) amygdala nuclei. CFC showed a learning-specific increase in pCREB ratio in B and CeA, in conditioned-saline rats compared to context and immediate shocked ones. Further, conditioned rats that received AP5 showed a decrease in pCREB ratio in LA, B and CeA. Our results support the current ideas that the role of hippocampus in contextual fear conditioning occurs by sending contextual information to amygdala to serve as conditioned stimulus.