The subsurface structure of intraseasonal Kelvin waves in two Indonesian Throughflow (ITF) exit passages is observed and characterized using velocity and temperature data from the 2004-06 International Nusantara Stratification and Transport (INSTANT) project. Scatterometer winds are used to characterize forcing, and altimetric sea level anomaly (SLA) data are used to trace the pathways of Kelvin waves east from their generation region in the equatorial Indian Ocean to Sumatra, south along the Indonesian coast, and into the ITF region.During the 3-yr INSTANT period, 40 intraseasonal Kelvin waves forced by winds over the central equatorial Indian Ocean caused strong transport anomalies in the ITF outflow passages. Of these events, 21 are classed as ''downwelling'' Kelvin waves, forced by westerly winds and linked to depressions in the thermocline and warm temperature anomalies in the ITF outflow passages; 19 were ''upwelling'' Kelvin waves, generated by easterly wind events and linked to shoaling of the thermocline and cool temperature anomalies in the ITF. Both downwelling and upwelling Kelvin waves have similar vertical structures in the ITF outflow passages, with strong transport anomalies over all depths and a distinctive upward tilt to the phase that indicates downward energy propagation. A linear wind-forced model shows that the first two baroclinic modes account for most of the intraseasonal variance in the ITF outflow passages associated with Kelvin waves and highlights the importance of winds both in the eastern equatorial Indian Ocean and along the coast of Sumatra and Java for exciting Kelvin waves.Using SLA as a proxy for Kelvin wave energy shows that 37% 6 9% of the incoming Kelvin wave energy from the Indian Ocean bypasses the gap in the coastal waveguide at Lombok Strait and continues eastward. Of the energy that continues eastward downstream of Lombok Strait, the Kelvin waves are split by Sumba Island, with roughly equal energy going north and south to enter the Savu Sea.