The wood of five European species: black poplar (Populus nigra L.), European beech (Fagus sylvatica L.), European ash (Fraxinus excelsior L.), European oak (Quercus robur L.), and Scots pine (Pinus sylvestris L.) was subjected to thermal modification in nitrogen atmosphere at 190 °C during 6 h. Native and modified wood was varnished and oiled in industrial conditions. Thermally modified (TM) wood was characterized by a greater absorption of varnish and oil when applying the first layer to the surface, which finally resulted in higher application values compared to native wood. In particular, after varnishing, there was a significant increase in gloss and radical change of colour. Regardless of the wood species, finishing process (varnishing, oiling), the ΔE values were close to or higher than 6, which proves high colour changes. Modified poplar, ash, and oak after varnishing had a different colour (ΔE higher than 12). The surface colour changes as a result of UV photoaging was individual, depending on the wood species and the method of finishing. In the case of the thickness of varnish coatings, the wood structure was important, i.e., on ring-porous hardwood and softwood they were thicker. In the case of wood species with a lower density, i.e., black poplar and pine, the thermal modification in nitrogen atmosphere process did not reduce the resistance of the varnish coat, and in the case of species with a higher density (oak, ash, beech) it decreased by one level. Thermal modification reduced the Brinell hardness of wood with wide rays (oak and beech) by 11%. The applied process of surface finishing by double varnishing or oiling did not significantly change the hardness of tested wood.