Context and Background: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. Motivation: We aim at verifying that the total energy conserved in the interaction is Pτ, i.e. the product of the average power P times the period τ of the X-rays. Hypothesis: Our investigation relies on the hypothesis that the voltage responsivity π V of the capacitor should be small, according to previous research. The parameter π V is the ratio between the voltage produced and the average power P of the X-rays, and measures the performance of the capacitor in response to the X-rays. Method: We measure the voltage produced by the capacitor in response to the X-rays, and then determine the average power P of the X-rays according to a procedure already assessed with infrared and visible light. Results: In our experiments, P turns out to be in the range between 10 −3 W to 10 0 W. Our procedure enables us to unveil the relationship between the average power P and the effective dose, an important operating parameter used to measure the delivery of X-rays in practical applications, such as standard X-ray medical imaging machines. Conclusions: We believe that our procedure paves the way for designing a possible X-ray power-meter, a tool presently missing in the market of X-ray characterization tools.