How people encode numbers in the context of multiple overlapping encoded cues remains unclear. In this study, we explored Chinese finger numbers, which contain both a numerical magnitude cue and a left-right hand cue offered by the expressing hand, to investigate the number encoding mechanism in the context of multiple overlapping cues. Chinese finger numbers expressed by the left or right hand were randomly and centrally presented on a computer screen to participants who were asked to perform a hand classification task (Experiment 1), a magnitude classification task (Experiment 2), a parity classification task (Experiment 3) and a magnitude classification or ring classification task (Experiment 4). We discovered (a) only an association effect between the pressed key and the expressing hand in hand classification and parity classification tasks, (b) the SNARC effect only on the magnitude classification task, (c) the association effect between the pressed key and the expressing hand on the larger, Chinese finger number, magnitude classification task in Experiment 2, and (d) the SNARC effect and the association between the pressed key and the expressing hand were reversed on the ring classification task. From these results, we concluded that people can flexibly choose appropriate number encoding cues and how numbers are encoded in the context of multiple overlapping cues depending on (a) which cognition task individuals perform and (b) the character of the numbers involved.