In this paper, an embedded multichannel capillary porous system (EM-CPS) was designed and fabricated with 304 stainless steel using the laser ablation method. The EM-CPS revealed its excellent ability to wick liquid lithium to its surface effectively. The interaction between Li-prefilled EM-CPS and plasma was studied, and the results showed that the surface temperature decreased by ~140 °C compared with the results of the experiment of EM-CPS without lithium filling. Additionally, EM-CPS displayed a better heat transfer performance and stronger radiation loss of the vapor cloud than the traditional woven tungsten-based meshes. In addition, the drift of the lithium vapor cloud center was found during plasma irradiation and led to a decrease in the intensity of the Li 670.78 nm emission line detected by the spectrometer at the observation point. When the thermal load deposited on the sample surface is reinforced by increasing the magnetic field, the rise in surface temperature is restrained due to the enhanced heat dissipation capability of lithium. SEM images of irradiated samples showed that the 304 stainless steel-based EM-CPS has corrosion problems due to the interaction between liquid lithium and argon plasma, but it still showed good plasma-facing characteristics. These findings provide a reference for further studies of embedded multichannel CPSs with plasma-facing components (PFCs) in linear plasma devices and tokamaks in the future.