Akkermansia muciniphila colonizes the mucus layer of the gastrointestinal tract, where the organism can be exposed to the oxygen that diffuses from epithelial cells. To understand how A. muciniphila is able to survive and grow at this oxic-anoxic interface, its oxygen tolerance and response and reduction capacities were studied. A. muciniphila was found to be oxygen tolerant. On top of this, under aerated conditions, A. muciniphila showed significant oxygen reduction capacities and its growth rate and yield were increased compared to those seen under strict anaerobic conditions. Transcriptome analysis revealed an initial oxygen stress response upon exposure to oxygen. Thereafter, genes related to respiration were expressed, including those coding for the cytochrome bd complex, which can function as a terminal oxidase. The functionality of A. muciniphila cytochrome bd genes was proven by successfully complementing cytochrome-deficient Escherichia coli strain ECOM4. We conclude that A. muciniphila can use oxygen when it is present at nanomolar concentrations.
IMPORTANCEThis article explains how Akkermansia muciniphila, previously described as a strictly anaerobic bacterium, is able to tolerate and even benefit from low levels of oxygen. Interestingly, we measured growth enhancement of A. muciniphila and changes in metabolism as a result of the oxygen exposure. In this article, we discuss similarities and differences of this oxygen-responsive mechanism with respect to those of other intestinal anaerobic isolates. Taken together, we think that these are valuable data that indicate how anaerobic intestinal colonizing bacteria can exploit low levels of oxygen present in the mucus layer and that our results have direct relevance for applicability, as addition of low oxygen concentrations could benefit the in vitro growth of certain anaerobic organisms.T he gastrointestinal (GI) tract harbors a rich and diverse microbial community, which has proven to play a role in host health and physiology (1). This microbial community is not in direct contact with epithelial cells; a thin layer of host-derived mucus separates them. The outer layer of mucus is colonized with microbes that differ in composition from the luminal microbiota (2, 3). The mucin glycans are used by some bacteria as growth substrates, resulting in the production of short-chain fatty acids (SCFAs) (4). To the host, the SCFAs are important modulators of gut health (4). To the microbial community, SCFAs are a necessary waste product, and the process of SCFA production is required to maintain the redox balance in the cell, as it can restore the NAD ϩ /NADH ratio (5). One member of the mucosa-associated microbiota is Akkermansia muciniphila, a mucin-degrading specialist that can use mucin as a sole carbon and nitrogen source (6). A. muciniphila is associated with a healthy GI tract, as its abundance is inversely correlated with several GI tract-related disorders (7). Moreover, it has been shown that A. muciniphila has immune-stimulatory capacities, stimul...