Ca
2+-dependent activator protein for secretion 2 (CAPS2 or CADPS2) potently promotes the release of brain-derived neurotrophic factor (BDNF). A rare splicing form of CAPS2 with deletion of exon3 (dex3) was identified to be overrepresented in some patients with autism. Here, we generated Caps2-dex3 mice and verified a severe impairment in axonal Caps2-dex3 localization, contributing to a reduction in BDNF release from axons. In addition, circuit connectivity, measured by spine and interneuron density, was diminished globally. The collective effect of reduced axonal BDNF release during development was a striking and selective repertoire of deficits in socialand anxiety-related behaviors. Together, these findings represent a unique mouse model of a molecular mechanism linking BDNFmediated coordination of brain development to autism-related behaviors and patient genotype.-dependent activator protein for secretion 2 (CAPS2 or CADPS2) is a member of the CAPS protein family that regulates the trafficking of dense-core vesicles by binding both phosphoinositides and dense-core vesicles (1-5). We initially identified mouse Caps2 as a potent factor promoting the release of brain-derived neurotrophic factor (BDNF) during cerebellar development (6, 7). Our subsequent knockout mouse study showed that Caps2 not only plays a role in neuronal development of the cerebrum and hippocampus as well as the cerebellum, but that it is also associated with social interaction, anxiety, and maternal and circadian behaviors in mice (7,8). We also showed that the expression of an exon 3-skipped (or -spliced out) form of CAPS2 (designated CAPS2-dex3) (8), which is now known to be a rare alternative splicing variant (9, 10), is increased in a subgroup of patients with autism and is not properly localized in axons (8). Thus, neurons overexpressing dex3 may fail to coordinate local BDNF release from axons properly (8, 9), resulting in improper brain development and function. The human CAPS2 gene locus (7q31.32) is intriguingly located within the autism susceptibility locus 1 (AUTS1) (11) on chromosome 7q31-q33, one of several susceptibility loci for autism (12). Moreover, an association of CAPS2 with autism has been suggested recently, not only by the presence of copy number variations in the CAPS2 gene in autistic patients (13-15), but also by decreased transcription of CAPS2 in the brains of people with autism (16). Thus, clarifying the biological significance of dex3 expression is an important step in elucidating the association of CAPS2 with brain circuit development and behaviors related to autism.The potential molecular risk factors for autism susceptibility have been increasingly reported (17-26) but are poorly characterized in animal models. In this report, we generated a mouse model expressing dex3 and analyzed the cellular and autistic-like behavioral phenotypes of dex3 mice. Our results support the involvement of the rare dex3 form of Caps2 in defective axonal BDNF secretion, affecting proper brain circuit development and/ or functio...