Both direct thermal and maternal photoperiodic effects on diapause induction have been thoroughly investigated in many insect species, while maternal thermal effects have been infrequently studied. We studied the effect of temperature during development of maternal generation on the proportion of diapausing progeny in four species of the genus Trichogramma Westw., minute egg parasitoids, widely used for biological control of lepidopteran pests. The maternal generations were reared at day lengths of 12 and 18 h and temperatures of 17, 20, 25 and 30°C, and their progeny developed under day length of 12 h and temperatures of 13 and 14°C. In T. evanescens and T. piceum, the proportion of diapausing progeny decreased with increasing temperature under all tested photoperiods and thermal regimes of progeny development; the high temperature of 30°C totally averted diapause of progeny. In T. buesi and T. principium, low temperatures of 17 and 20°C resulted in relatively high proportion of diapausing progeny only when the maternal generation developed under short-day conditions. The threshold of the maternal thermal response varied from 17-18 to 22-23°C. Under field conditions, Trichogramma females are exposed to such high temperatures only during summer, when diapause in their progeny is in any case prevented by the maternal photoperiodic response and by the thermal response of the larvae. We conclude that the maternal thermal effect on diapause induction, although to a different extent, is inherent to Trichogramma species but, at least as suggested by laboratory experiments, it does not play any role in the regulation of seasonal development under natural conditions. However, during mass rearing of Trichogramma wasps, it should be taken into account that high temperature, even when combined with short photoperiod, can avert diapause in the next generation.