Functional consequences of impaired endothelial nitric oxide synthase (eNOS) activity causing organ-specific abnormalities on a diabetic setting are not completely understood. In this study, we extensively characterized a diabetic mouse model (lepr db/db ) in which eNOS expression is genetically disrupted (eNOS À/À ). The eNOS À/À / lepr db/db double-knockout (DKO) mice developed obesity, hyperglycemia, hyperinsulinemia and hypertension. Analysis of tissues from DKO mice showed large islets in the pancreas and fat droplets in hepatocytes. Interestingly, the aorta was normal and atherogenic lesions were not observed. Abnormalities in the aorta including poor re-endothelialization and increased medial wall thickness were evident only in response to deliberate injury. In contrast, significant glomerular capillary damage in the kidney was identified, with DKO mice demonstrating a robust diabetic nephropathy similar to human disease. The vascular and renal impairments in DKO mice were pronounced despite lower fasting plasma glucose levels compared to lepr db/db mice, indicating that eNOS is a critical determinant of hyperglycemia-induced organ-specific complications and their severity in diabetes. Results provide the first evidence that absence of eNOS in diabetes has a greater deleterious effect on the renal microvasculature than on the larger aortic vessel. The DKO model may suggest novel therapeutic strategies to prevent both vascular and renal complications of diabetes. KEYWORDS: diabetes; endothelial dysfunction; eNOS; micro-and macrovasculature; nephropathy and vasculopathy Macro-and microangiopathy including accelerated atherosclerosis and nephropathy are the most common complications of diabetes. Reduced bioavailabilty of nitric oxide (NO), due to impaired nitric oxide synthase (NOS) activity, is implicated in the generation of these abnormalities. 1-3 NO is formed from L-Arginine by three isoforms of NOS with stoichiometric production of L-citrulline. Among the three isoforms, endothelial NOS (eNOS) is constitutively expressed predominantly in the macrovascular endothelium and along the renal microvascular tree. Basal release of eNOS-driven NO by endothelial cells contributes to the maintenance of normal vasodilatory tone and thromboresistance. Under conditions of hyperglycemia and associated increase in advanced glycation end products, there is excessive generation of superoxide, which interacts with NO resulting in the formation of peroxynitrites. The peroxynitrites oxidize tetrahydrobiopterin, an important cofactor involved in normal eNOS activity. The deficiency of tetrahydrobiopterin causes eNOS uncoupling, which results in increased generation of superoxide rather than NO. Overall, superoxide generation is amplified in macrovessels in diabetes with concomitant reduction in the level of bioavailable NO.Nitric oxide also acts as a potent modulator of renal function and controls both afferent and efferent vascular tone, glomerular ultrafiltration coefficient 4,5 and medullary blood flow. 6 However, the pr...