Objective: Cochlear implants provide auditory perception to those with severe to profound sensorineural hearing loss: however, the quality of sound perceived by users does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function. 
Approach: For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineer precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding and use live imaging to better understand how neurite growth is guided by these cues. 
Main Results: We find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity is increased by 20 to 70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made obtuse. Further, we see that dorsal root ganglion neuron growth cones change their morphology and migration to become more elongated within microfeatures. Our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain. 
Significance: Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growth in vivo.