Reaching with the arm and grasping with the hand and fingers is a complex behavior that appears in utero, is elaborated over the first few years of life, and serves useful everyday functions throughout the course of human life. Several neurological conditions can impair the ability to produce arm and hand movements and so greatly impact on the quality of life and well-being of the affected individuals. Given the fundamental role that arm and hand movements play in everyday life, deficits related to arm and hand function are one of the most debilitating motor conditions. Neurological conditions that can affect arm and hand movements include autism spectrum disorder, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, cerebral palsy, and strokerelated motor cortex damage as well as spinal cord injury at cervical levels. While arm and hand movement has received considerable attention from both clinicians and researchers from diverse scientific backgrounds, there are a number of broad research questions that still need to be addressed in this research field. The present Research Topic is entirely devoted to arm and hand movement in health as well as in disease. It is a compilation of original research papers and reviews, clinical case studies, hypothesis and theory articles, opinions, commentaries, and methods articles that cover important aspects of the topic from different perspectives.In this volume, de Bruin et al.(1) present data that describe how healthy adults use space while performing a visually guided grasping task. A model for understanding hand functioning in children with cerebral palsy is proposed by Arnould et al. (2) (9) reinstate patient DF's amazing ability to use information regarding form and orientation of objects to guide skilled reaching actions despite her visual agnosia. In an opinion article, Moore (10) argues that nerve transfer is increasingly popular and is becoming the best treatment strategy for most brachial plexus damage as well as for patients with spinal cord injury at cervical levels. Vicario (11) provides a personal commentary on a paper from Hayashi et al. (12) and, in a review article, Karl and Whishaw (13) summarize the evidence that show that reaching and grasping are from distinct neural and evolutionary origins. Irvine et al. (14) contribute a methods article that assesses the reliability of the Irvine, Beatties, and Bresnahan (IBB) forelimb recovery scale. Fouad et al. (15) demonstrate that continuous viral-mediated brain-derived neurotrophic factor (BDNF) over-expression promotes spasticity in rats with spinal cord hemisections at cervical levels. Alstermark and Pettersson (16) bring evidence to show that lesions to the corticospinal tract that spare the cortico-reticulospinal pathway in the rat have no deleterious effects on skilled reaching and grasping. Finally, Tosolini et al. (17) describe how targeting the full length of the motor endplate region in the mouse forelimb with Fluoro-Gold increases the uptake of this neuroanatomical retrograde tracer...