The proteasome degrades proteins modified by polyubiquitylation, so correctly controlled ubiquitylation is crucial to avoid unscheduled proteolysis of essential proteins. The mechanism regulating proteolysis of RNAPII has been controversial since two distinct ubiquitin ligases (E3s), Rsp5 (and its human homologue NEDD4) and Elongin-Cullin complex, have both been shown to be required for its DNA-damage-induced polyubiquitylation. Here we show that these E3s work sequentially in a two-step mechanism. First, Rsp5 adds mono-ubiquitin, or sometimes a ubiquitin chain linked via ubiquitin lysine 63 that does not trigger proteolysis. When produced, the K63 chain can be trimmed to mono-ubiquitylation by an Rsp5-associated ubiquitin protease, Ubp2. Based on this mono-ubiquitin moiety on RNAPII, an Elc1/Cul3 complex then produces a ubiquitin chain linked via lysine 48, which can trigger proteolysis. Likewise, for correct polyubiquitylation of human RNAPII, NEDD4 cooperates with the ElonginA/B/C-Cullin 5 complex. These data indicate that RNAPII polyubiquitylation requires cooperation between distinct, sequentially acting ubiquitin ligases, and raise the intriguing possibility that other members of the large and functionally diverse family of NEDD4-like ubiquitin ligases also require the assistance of a second E3 when targeting proteins for degradation.elongin ͉ NEDD4 ͉ Rsp5 ͉ ubiquitylation P rotein ubiquitylation plays a crucial role in virtually all cell regulatory pathways. Mono-ubiquitylation commonly alters the activity of the target protein, or tags it for interaction with other factors, while the effect of polyubiquitylation depends on the type of ubiquitin chain being added. Ubiquitin lysine 48 (K48) chains most often result in degradation of the target protein by the proteasome, whereas other chains, such as those occurring through K63, are typically signals for proteolysisindependent pathways (1, 2).One interesting substrate for protein ubiquitylation is RNA-PII, which transcribes all protein-encoding genes in eukaryotes. Ubiquitylation and degradation of RNAPII was first thought to occur specifically in response to DNA damage (3-5), but more recent experiments have shown that RNAPII arrested during transcript elongation as a result of other transcription obstacles is also prone to ubiquitylation and degradation (6). Thus, degradation of RNAPII may be a ''last resort,'' used to clear active genes of persistently arrested RNAPII elongation complexes (6-9). Interestingly, the proteasome is nuclear and can be found on the coding region of genes by chromatin-immunoprecipitation (10), so RNAPII proteolysis may well occur on the DNA.We have reconstituted RNAPII ubiquitylation in vitro with highly purified, physiologically relevant yeast, or human, ubiquitylation factors, respectively (6,11,12). The yeast HECT E3 Rsp5 binds RNAPII via the flexible C-terminal repeat domain (CTD) of the Rpb1 subunit (13), but modifies the polymerase in the main body of the Rpb1 subunit (6,14). Mutation of RSP5 (rsp5-1; temperature-sensitiv...