Obstacles arranged into a pre-fractal shape (Sierpinski carpet) were tested for their blast attenuation abilities using 250 g PE4 at three different scaled distances ( Z = 1.87, 2.24, 2.99 m/kg1/3). Three pre-fractal iterations were tested, as well as free-field tests for comparative purposes. Reductions in peak overpressure up to 26% and peak specific impulse up to 19% were observed, attributed to a mechanism known as ‘trapping’. This mechanism is characterised by a reduction in the ability of a blast wave to advect downstream, with corresponding increases in pressure observed within the bounds of the pre-fractal obstacle. Attenuation magnitudes and areas of reduced pressure and impulse were found to be drastically different with each pre-fractal iteration, with a transition from shadowing to wave trapping as the obstacles more closely resembled true fractals. A linear dependence on a newly-defined obstruction factor ( OF) was found for arrival time, overpressure and impulse at the sensor locations, suggesting that the attenuation of a pre-fractal obstacle is inherently determinable. The results indicate that the mechanism of blast mitigation of pre-fractal obstacles is fundamentally different from singular or arrays of regular obstacles, and could be exploited further to develop novel protective structures with enhanced blast attenuation.