Improvement of the ballistic performance of aramid fabric is an important topic in the study of soft body armors, especially with their increasing use in such applications over the past decades. To enhance and tailor the performance of fabrics, having control over one of its primary energy absorption mechanisms, interyarn friction, is required. Here, a recently reported surface fibrilization method is exploited and optimized to improve interyarn friction in aramid fabrics. Through tow pullout testing of fibrilized fabrics, the fibrilization treatment is shown to provide up to seven times higher pullout energy and six times higher peak load. To correlate the effects of the treatment on the ballistic response, impact tests are conducted on treated fabric targets using a gas gun setup. The fibrilized fabrics displayed a 10 m s‐1 increase in V50 velocity, compared to that of untreated fabrics, while retaining its original flexibility and mechanical strength. Similarly, the fibrilization treatment also resulted in 230% improvement in depth of penetration when dynamically stabbed using a spike impactor. The results demonstrate the potential of the proposed surface fibrilization treatment as a fast and cost‐effective technique to improve the ballistic and stab performance of aramid‐based soft body armors.