Chemical shifts (CS) of the 1H nucleus in N···H···O type hydrogen bonds (H-bond) were observed in some complexes between chlorophenols [pentachlorophenol (PCP), 2,4,6-tricholorophenol (TCP), 2,6-dichlorophenol (26DCP), 3,5-dichlorophenol (35DCP), and p-chlorophenol (pCP)] and nitrogen-base (N-Base) by solid-state high-resolution 1H-NMR with the magic-angle-spinning (MAS) method. Employing N-Bases with a wide range of pKa values (0.65–10.75), 1H-MAS-NMR CS values of bridging H atoms in H-bonds were obtained as a function of the N-Base’s pKa. The result showed that the CS values were increased with increasing pKa values in a range of ΔpKa < 0 [ΔpKa = pKa(N-Base) - pKa(chlorophenols)] and decreased when ΔpKa > 2: The maximum CS values was recorded in the PCP (pKa = 5.26)–4-methylpyridine (6.03), TCP (6.59)–imidazole (6.99), 26DCP (7.02)–2-amino-4-methylpyridine (7.38), 35DCP (8.04)–4-dimethylaminopyridine (9.61), and pCP (9.47)–4-dimethylaminopyridine (9.61) complexes. The largest CS value of 18.6 ppm was recorded in TCP–imidazole crystals. In addition, H/D isotope effects on 1H-MAS-NMR spectra were observed in PCP–2-amino-3-methylpyridine. Based on the results of CS simulation using a B3LYP/6-311+G** function, it can be explained that a little changes of the N–H length in H-bond contribute to the H/D isotope shift of the 1H-MAS-NMR peaks.