Artificial lighting at night (ALAN) produced by urban, industrial, and roadway lighting, as well as other sources, has dramatically increased in recent decades, especially in coastal environments that support dense human populations. Artificial Blightscapes^are characterized by distinct spatial, temporal, and spectral patterns that can alter natural patterns of light and dark with consequences across levels of biological organization. At the individual level, ALAN can elicit a suite of physiological and behavioral responses associated with light-mediated processes such as diel activity patterns and predator-prey interactions. ALAN has also been shown to modify community composition and trophic structure, with implications for ecosystem-level processes including primary productivity, nutrient cycling, and the energetic linkages between aquatic and terrestrial systems. Here, we review the state of the science relative to the impacts of ALAN on estuaries, which is an important step in assessing the long-term sustainability of coastal regions. We first consider how multiple properties of ALAN (e.g., intensity and spectral content) influence the interaction between physiology and behavior of individual estuarine biota (drawing from studies on invertebrates, fishes, and birds). Second, we link individual-to community-and ecosystem-level responses, with a focus on the impacts of ALAN on food webs and implications for estuarine ecosystem functions. Coastal aquatic communities and ecosystems have been identified as a key priority for ALAN research, and a cohesive research framework will be critical for understanding and mitigating ecological consequences.