Studying metal-protein
interactions is key for understanding the
fate of metallodrugs in biological systems. When a metal complex is
not emissive and too weakly bound for mass spectrometry analysis,
however, it may become challenging to study such interactions. In
this work a synthetic procedure was developed for the alkyne functionalization
of a photolabile ruthenium polypyridyl complex, [Ru(tpy)(bpy)(Hmte)](PF6)2, where tpy = 2,2′:6′,2′′-terpyridine,
bpy = 2,2′-bipyridine, and Hmte = 2-(methylthio)ethanol. In
the functionalized complex [Ru(HCC-tpy)(bpy)(Hmte)](PF6)2, where HCC-tpy = 4′-ethynyl-2,2′:6′,2′′-terpyridine,
the alkyne group can be used for bioorthogonal ligation to an azide-labeled
fluorophore using copper-catalyzed “click” chemistry.
We developed a gel-based click chemistry method to study the interaction
between this ruthenium complex and bovine serum albumin (BSA). Our
results demonstrate that visualization of the interaction between
the metal complex and the protein is possible, even when this interaction
is too weak to be studied by conventional means such as UV–vis
spectroscopy or ESI mass spectrometry. In addition, the weak metal
complex-protein interaction is controlled by visible light irradiation, i.e., the complex and the protein do not interact in the
dark, but they do interact via weak van der Waals
interactions after light activation of the complex, which triggers
photosubstitution of the Hmte ligand.