The most effective treatment of Parkinson's disease (PD) is, at present, the dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA), however a number of disadvantages such as a loss of drug efficacy and severe side-effects (psychoses, dyskinesias and on-off phenomena) limit long-term effective utilisation of this drug. Recent experimental studies in which selective antagonists of adenosine A(2A) receptors were used, have shown an improvement in motor disabilities in animal models of PD. The A(2A) antagonist [7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine] (SCH 58261) potentiated the contralateral turning behavior induced by a threshold dose of L-DOPA or direct dopamine receptor agonists in unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, an effect accompanied by an increase in Fos-like-immunoreactivity in neurons of the lesioned striatum. Likewise, other A(2A) receptor antagonists such as (3,7-dimethyl-1-propargylxanthine) (DMPX), [E-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine] (KF 17837) and [E-1,3-diethyl-8(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6-dione] (KW 6002) antagonized catalepsy induced by haloperidol or reserpine in the rat, whereas in non-human primate models of PD, KW 6002 reduced the rigidity and improved the disability score of MPTP-treated marmosets and cynomolgus monkeys. Moreover, in contrast to L-DOPA, selective A(2A) receptor antagonists administered chronically did not produce dyskinesias and did not evoke tolerance in 6-OHDA and MPTP models of PD. An additional therapeutic potential of adenosine A(2A) antagonists emerged from studies showing neuroprotective properties of these compounds in animal models of cerebral ischemia and excitotoxicity, as well as in the MPTP model of PD. Adenosine A(2A) receptor antagonists by reversing motor impairments in animal models of PD and by contrasting cell degeneration are some of the most promising compounds for the treatment of PD.