Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties. However, plant composition and species diversity change rapidly during the process of succession, the effect of leguminosae on soil physical-chemical and biological properties is still unclear. This study investigated the changes in the composition of plant community, vegetation characteristics, soil physical-chemical properties, and soil biological properties on five former farmlands in China, which had been abandoned for 0, 5, 10, 18, and 30 a. Results showed that, with successional time, plant community developed from annual plants to perennial plants, the importance of Leguminosae and Asteraceae significantly increased and decreased, respectively, and the importance of grass increased and then decreased, having a maximum value after 5 a of abandonment. Plant diversity indices increased with successional time, and vegetation coverage and above-and below-ground biomass increased significantly with successional time after 5 a of abandonment. Compared with farmland, 30 a of abandonment significantly increased soil nutrient content, but total and available phosphorus decreased with successional time. Changes in plant community composition and vegetation characteristics not only change soil properties and improve soil physical-chemical properties, but also regulate soil biological activity, thus affecting soil nutrient cycling. Among these, Leguminosae have the greatest influence on soil properties, and their importance values and community composition are significantly correlated with soil properties. Therefore, this research provides more scientific guidance for selecting plant species to stabilize soil ecosystem of farmland to grassland in the Loess Plateau, China.