Geological Carbon Sequestration (GCS) plays a major role in mitigating the global warming due to the increasing concentration of CO2 in atmosphere. It is important to understand the GCS process to analyze and predict its influence on the CO2 reservoir site. This work firstly offers three finite difference programs for simulating the GCS process, secondly applies the program to perform quantitative analysis of the GCS, and finally gives several remarks related to the GCS.
Firstly, we describe the three finite difference programs, which, to different extents, take into account the role of chemical reaction in the GCS process. The first program is a reactive two-phase flow model that only considers the interplay between brine and gas phases, which can be solved with explicit method. The second program is a simplified reactive three-phase flow model that also considers the heterogeneous reaction between mineral rock and the aqueous species, but all the chemical reactions are treated as equilibrium reactions and expressed with empirical formulas, to avoid performing grid-by-grid calculation of chemical reaction at each time step. The third program is a full reactive three-phase flow model that accounts for partial equilibrium reaction system (i.e., both equilibrium and kinetic reactions are included) as well as the pure equilibrium reaction system. In this third program, the partial equilibrium chemical system is solved with MAL, and chemical reactions and mass transport are alternately solved with Newton-Raphson method. All these programs have been approved through non-ideal benchmark test that only considers the transport issue.
Secondly, the first program is employed to perform two qualitative analysis on the dissolution trapping. The first quantitative analysis focuses on the enhanced dissolution efficiency of overlying gaseous CO2 into underlying brine owing to gravity-driven convection (GDC) in the brine phase. The injected light CO2 will override the brine. Studies have shown that the dissolution is not only driven by molecular diffusion, but also enhanced by the GDC in the brine, because the dissolution of CO2 can increase the density of the brine in the upper portion. In literature, the GDC in homogeneous media has been well studied and researchers are attempting to investigate the GDC in realistic heterogeneous media. It is yet to find an efficient formula to predict the dissolution rate in heterogeneous media with anisotropic permeability distribution. This work conducts a large number of numerical simulations in various heterogeneous fields, analyzes the simulation results, and proposes two formulas that efficiently predict the dissolution rate based on geological and fluid parameters.
The second quantitative analysis focuses on the enhanced dissolution trapping due to the layered permeability structure during the injection period. Results show that when buoyant forces are important, vertical segregation controls the overall behavior of CO2, diminishing the influence of small-scale heterogeneity on dissolution. However, when buoyant forces are relatively small compared to the degree of heterogeneity, CO2 migrates preferentially through high permeability layers and dissolution efficiency increases with heterogeneity due to the stretching of the CO2 plume that enhances mixing. As a result, in this situation, the upscaling of permeability leads to an underestimation of the dissolution efficiency.
Additionally, we give in the appendix a parallel study on how to enhance NAPL removal and mixing with engineering chaotic advection.
El secuestro geológico de carbono (GCS) juega un papel importante en la mitigación del calentamiento global debido a la creciente concentración de CO2 en la atmósfera. Es importante entender el proceso de GCS para analizar y predecir su influencia en el sitio del depósito de CO2. Este trabajo, en primer lugar, ofrece tres programas de diferencias finitas para simular el proceso GCS, en segundo lugar, aplica uno de los programas para realizar análisis cuantitativos del GCS y, finalmente, ofrece varios comentarios relacionados con el GCS. Primero, describimos los tres programas de diferencias finitas, que, en diferentes grados, tienen en cuenta el papel de la reacción química en el proceso de GCS. El primer programa es un modelo de flujo reactivo de dos fases que solo considera la interacción entre las fases de salmuera y gas, que se puede resolver con un método explícito. El segundo programa es un modelo de flujo reactivo trifásico simplificado que también considera la reacción heterogénea entre la roca mineral y la especie acuosa, pero todas las reacciones químicas se tratan como reacciones de equilibrio y se expresan con fórmulas empíricas, para evitar realizar cuadrícula por cuadrícula el cálculo de la reacción química en cada paso de tiempo. El tercer programa es un modelo de flujo reactivo de tres fases completo que tiene en cuenta el sistema de reacción de equilibrio parcial (es decir, se incluyen las reacciones de equilibrio y cinéticas), así como el sistema de reacción de equilibrio puro. En este tercer programa, el sistema químico de equilibrio parcial se resuelve con MAL, y las reacciones químicas y el transporte de masa se resuelven alternativamente con el método de Newton-Raphson. Todos estos programas han sido aprobados a través de una prueba de referencia no ideal que solo considera el tema del transporte. En segundo lugar, el primer programa se emplea para realizar dos análisis cualitativos sobre el trampeo por disolución. El primer análisis cuantitativo se centra en la eficiencia de disolución mejorada del CO2 gaseoso superpuesto en la salmuera subyacente debido a la convección impulsada por gravedad (GDC) en la fase de salmuera. El CO2 ligero inyectado anulará la salmuera. Los estudios han demostrado que la disolución no solo es impulsada por la difusión molecular, sino también mejorada por el GDC en la salmuera, porque la disolución de CO2 puede aumentar la densidad de la salmuera en la parte superior. En la literatura, la GDC en medios homogéneos ha sido bien estudiada y los investigadores están intentando investigar la GDC en medios heterogéneos realistas. Aún está por encontrar una fórmula eficiente para predecir la tasa de disolución en medios heterogéneos con distribución de permeabilidad anisotrópica. Este trabajo realiza una gran cantidad de simulaciones numéricas en varios campos heterogéneos, analiza los resultados de la simulación y propone dos fórmulas que predicen de manera eficiente la velocidad de disolución en función de parámetros geológicos y de fluidos. El segundo análisis cuantitativo se centra en la captura de disolución mejorada debido a la estructura de permeabilidad en capas durante el período de inyección. Los resultados muestran que cuando las fuerzas de flotación son importantes, la segregación vertical controla el comportamiento general de CO2, lo que disminuye la influencia de la heterogeneidad a pequeña escala en la disolución. Sin embargo, cuando las fuerzas de flotación son relativamente pequeñas en comparación con el grado de heterogeneidad, el CO2 migra preferentemente a través de capas de alta permeabilidad y la eficiencia de disolución aumenta con la heterogeneidad debido al estiramiento de la pluma de CO2 que mejora la mezcla. Como resultado, la ampliación de la permeabilidad conduce a una subestimación de la eficiencia. Además, proporcionamos en el apéndice un estudio paralelo sobre cómo mejorar la eliminación y mezcla de NAPL con advección caótica de ingeniería.