As an endogenous gaseous transmitter, the function of hydrogen sulfide (H2S) has been extensively studied in plants. Once synthesized, H2S may be involved in almost all life processes of plants. Among them, a key route for H2S bioactivity occurs via protein persulfidation, in which process oxidizes cysteine thiol (R-SH) groups into persulfide (R-SSH) groups. This process is thought to underpin a myriad of cellular processes in plants linked to growth, development, stress responses, and phytohormone signaling. Multiple lines of emerging evidence suggest that this redox-based reversible post-translational modification can not only serve as a protective mechanism for H2S in oxidative stress, but also control a variety of biochemical processes through the allosteric effect of proteins. Here, we collate emerging evidence showing that H2S-mediated persulfidation modification involves some important biochemical processes such as growth and development, oxidative stress, phytohormone and autophagy. Additionally, the interaction between persulfidation and S-nitrosylation is also discussed. In this work, we provide beneficial clues for further exploration of the molecular mechanism and function of protein persulfidation in plants in the future.