TraI, a bifunctional enzyme containing relaxase and helicase activities, initiates and drives the conjugative transfer of the Escherichia coli F plasmid. Here, we examined the structure and function of the TraI helicase. We show that TraI binds to singlestranded DNA (ssDNA) with a site size of ϳ25 nucleotides, which is significantly longer than the site size of other known superfamily I helicases. Low cooperativity was observed with the binding of TraI to ssDNA, and a double-stranded DNA-binding site was identified within the N-terminal region of TraI 1-858, outside the core helicase motifs of TraI. We have revealed that the affinity of TraI for DNA is negatively correlated with the ionic strength of the solution. The binding of AMPPNP or ADP results in a 3-fold increase in the affinity of TraI for ssDNA. Moreover, TraI prefers to bind ssDNA oligomers containing a single type of base. Finally, we elucidated the solution structure of TraI using small angle x-ray scattering. TraI exhibits an ellipsoidal shape in solution with four domains aligning along one axis. Taken together, these data result in the assembly of a model for the multidomain helicase activity of TraI.Conjugative plasmid transfer is a central mechanism for the horizontal exchange of genetic material between bacterial cells, as well as for the spread of antibiotic resistance genes and virulence factors (1-3). Conjugative plasmid transfer requires both a DNA relaxase and a DNA helicase. The relaxase initiates DNA transfer by cleaving the transferred strand at a specific site within the oriT, forming a 5Ј-phosphotyrosine intermediate. Following nicking, the helicase uses the energy from ATP hydrolysis to unwind the plasmid and drive the transfer of DNA into the recipient cell. The relaxase completes plasmid transfer by breaking the covalent phosphotyrosine linkage and releasing the transferred DNA for replication in the recipient (2, 4, 5).