The purpose of the present research was to identify and examine materials demonstrating a previously undiscovered property of coherent poly propagation (CPP). The materials were amorphous silicates as natural precious opals. CPP enabled three-dimensional photonic control over mono and polychromatic visible light wavelengths. CPP caused coherent diffraction of incident poly and monochromatic light. Apart from the iconic play-of-color of precious opal, CPP specimens demonstrated diffractive photonic demultiplexing and/or upconversion and/or downconversion of incident light with strong photonic coherence such that the shape of the incident light source was propagated over three dimensions over multiple visible frequencies. CPP events manifested as each specimen was rocked under the incident light. Additionally, the specimens demonstrated atypical control over internally reflected and transmitted light. The specimens applied axial rotational symmetry over the incident light. Amorphous materials would be expected to exert no symmetry control. CPP and rotational properties occurred in isolation from exogenous thermal, photonic and electrical influences. Furthermore, several non-destructive analytical instruments were employed, such as: spectrophotometer, polariscope and refractometer. The analytical methods revealed unusual behaviors of these specimens. The application of materials demonstrating three-dimensional photonic control will have far-reaching implications for many industries, including: photonic wavelength demultiplexing, fiber optics, imaging, microscopy, projections, security, cryptography, computers and communications.