The generation of random mutations in the mitochondrial cytochrome b gene of Saccharomyces cerevisiae has been used as a most fruitful means of identifying subregions that play a key role in the bc1 complex mechanism, best explained by the protonmotive Q cycle originally proposed by Peter Mitchell. Selection for center i and center o inhibitor resistance mutants, in particular, has yielded much information. The combined approaches of genetics and structural predictions have led to a two-dimensional folding model for cytochrome b that is most compatible with current knowledge of the protonmotive Q cycle. A three-dimensional model is emerging from studies of distant reversions of deficient mutants. Finally, interactions between cytochrome b and the other subunits of the bc1 complex, such as the iron-sulfur protein, can be affected by a single amino acid change.